Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 20(4): e3001604, 2022 04.
Article in English | MEDLINE | ID: mdl-35436284

ABSTRACT

Cryptosporidium is a leading infectious cause of diarrhea around the world associated with waterborne outbreaks, community spread, or zoonotic transmission. The parasite has significant impact on early childhood mortality, and infection is both a consequence and cause of malnutrition and stunting. There is currently no vaccine, and treatment options are very limited. Cryptosporidium is a member of the Apicomplexa, and, as typical for this, protist phylum relies on asexual and sexual reproduction. In contrast to other Apicomplexa, including the malaria parasite Plasmodium, the entire Cryptosporidium life cycle unfolds in a single host in less than 3 days. Here, we establish a model to image life cycle progression in living cells and observe, track, and compare nuclear division of asexual and sexual stage parasites. We establish the length and sequence of the cell cycles of all stages and map the developmental fate of parasites across multiple rounds of invasion and egress. We propose that the parasite executes an intrinsic program of 3 generations of asexual replication, followed by a single generation of sexual stages that is independent of environmental stimuli. We find no evidence for a morphologically distinct intermediate stage (the tetraploid type II meront) but demonstrate direct development of gametes from 8N type I meronts. The progeny of each meront is collectively committed to either asexual or sexual fate, but, importantly, meronts committed to sexual fate give rise to both males and females. We define a Cryptosporidium life cycle matching Tyzzer's original description and inconsistent with the coccidian life cycle now shown in many textbooks.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Animals , Child, Preschool , Cryptosporidiosis/parasitology , Female , Germ Cells , Humans , Life Cycle Stages , Male
2.
Trends Parasitol ; 36(6): 495-498, 2020 06.
Article in English | MEDLINE | ID: mdl-32407679

ABSTRACT

In an ideal world, there are equal opportunities for women to enter and progress in all scientific disciplines without bias or prejudice. Here, we share our experiences in building communities of women parasitology and offer easy-to-implement guidelines for scientists and institutions to overcome unconscious bias and create environments with better gender equality and diversity.


Subject(s)
Interpersonal Relations , Laboratory Personnel/statistics & numerical data , Parasitology/organization & administration , Prejudice/prevention & control , Cultural Diversity , Humans , Parasitology/statistics & numerical data , Parasitology/trends , Personnel Selection/standards
3.
Infect Immun ; 88(4)2020 03 23.
Article in English | MEDLINE | ID: mdl-32014892

ABSTRACT

Rodents are critical for the transmission of Toxoplasma gondii to the definitive feline host via predation, and this relationship has been extensively studied as a model for immune responses to parasites. Neospora caninum is a closely related coccidian parasite of ruminants and canines but is not naturally transmitted by rodents. We compared mouse innate immune responses to N. caninum and T. gondii and found marked differences in cytokine levels and parasite growth kinetics during the first 24 h postinfection (hpi). N. caninum-infected mice produced significantly higher levels of interleukin-12 (IL-12) and interferon gamma (IFN-γ) by as early as 4 hpi, but the level of IFN-γ was significantly lower or undetectable in T. gondii-infected mice during the first 24 hpi. "Immediate" IFN-γ and IL-12p40 production was not detected in MyD88-/- mice. However, unlike IL-12p40-/- and IFN-γ-/- mice, MyD88-/- mice survived N. caninum infections at the dose used in this study. Serial measures of parasite burden showed that MyD88-/- mice were more susceptible to N. caninum infections than wild-type (WT) mice, and control of parasite burdens correlated with a pulse of serum IFN-γ at 3 to 4 days postinfection in the absence of detectable IL-12. Immediate IFN-γ was partially dependent on the T. gondii mouse profilin receptor Toll-like receptor 11 (TLR11), but the ectopic expression of N. caninum profilin in T. gondii had no impact on early IFN-γ production or parasite proliferation. Our data indicate that T. gondii is capable of evading host detection during the first hours after infection, while N. caninum is not, and this is likely due to the early MyD88-dependent recognition of ligands other than profilin.


Subject(s)
Coccidiosis/immunology , Immunologic Factors/metabolism , Interferon-gamma/metabolism , Neospora/immunology , Rodent Diseases/immunology , Toxoplasma/immunology , Toxoplasmosis, Animal/immunology , Animals , Interferon-gamma/deficiency , Interleukin-12/deficiency , Interleukin-12/metabolism , Mice , Mice, Knockout , Myeloid Differentiation Factor 88/deficiency , Myeloid Differentiation Factor 88/metabolism , Neospora/growth & development , Survival Analysis , Time Factors , Toxoplasma/growth & development
4.
Nat Microbiol ; 4(12): 2226-2236, 2019 12.
Article in English | MEDLINE | ID: mdl-31477896

ABSTRACT

The apicomplexan parasite Cryptosporidium is a leading global cause of severe diarrhoeal disease and an important contributor to early childhood mortality. Currently, there are no fully effective treatments or vaccines available. Parasite transmission occurs through ingestion of oocysts, through either direct contact or consumption of contaminated water or food. Oocysts are meiotic spores and the product of parasite sex. Cryptosporidium has a single-host life cycle in which both asexual and sexual processes occur in the intestine of infected hosts. Here, we genetically engineered strains of Cryptosporidium to make life cycle progression and parasite sex tractable. We derive reporter strains to follow parasite development in culture and in infected mice and define the genes that orchestrate sex and oocyst formation through mRNA sequencing of sorted cells. After 2 d, parasites in cell culture show pronounced sexualization, but productive fertilization does not occur and infection falters. By contrast, in infected mice, male gametes successfully fertilize female parasites, which leads to meiotic division and sporulation. To rigorously test for fertilization, we devised a two-component genetic-crossing assay using a reporter that is activated by Cre recombinase. Our findings suggest obligate developmental progression towards sex in Cryptosporidium, which has important implications for the treatment and prevention of the infection.


Subject(s)
Cryptosporidiosis/parasitology , Cryptosporidium parvum/growth & development , Cryptosporidium parvum/genetics , Life Cycle Stages/physiology , Sexual Development/physiology , Animals , Cryptosporidium parvum/cytology , Disease Models, Animal , Female , Fertilization , Gene Expression , Genes, Protozoan/genetics , Homeodomain Proteins/genetics , Interferon-gamma/genetics , Male , Mice , Mice, Knockout , Oocysts , Sequence Analysis, RNA
5.
PLoS Biol ; 17(9): e3000446, 2019 09.
Article in English | MEDLINE | ID: mdl-31487278

ABSTRACT

Toxoplasma gondii is a remarkably successful protozoan parasite that infects a third of the human population, along with most mammals and birds. However, the sexual portion of the parasite's life cycle is narrowly limited to cats. How parasites distinguish between hosts has long been a mystery. A new study reveals that Toxoplasma identifies cats based on a single fatty acid, linoleic acid. Experimental manipulation of fatty acid metabolism by drug treatment turns a mouse into a cat in the "eye" of the parasite. This new model enables genetic crosses of an important human pathogen without the use of companion animals and opens the door to future discovery.


Subject(s)
Parasites , Toxoplasma , Animals , Cats , Host Specificity , Humans , Life Cycle Stages , Linoleoyl-CoA Desaturase , Mice
6.
mSphere ; 3(5)2018 10 17.
Article in English | MEDLINE | ID: mdl-30333181

ABSTRACT

The opportunistic intracellular parasite Toxoplasma gondii causes a lifelong chronic infection capable of reactivating in immunocompromised individuals, which can lead to life-threatening complications. Following invasion of the host cell, host mitochondria associate with the parasitophorous vacuole membrane. This phenotype is T. gondii strain specific and is mediated by expression of a host mitochondrial association-competent (HMA+) paralog of the parasite protein mitochondrial association factor 1 (MAF1b). Previous work demonstrated that expression of MAF1b in strains that do not normally associate with host mitochondria increases their fitness during acute infection in vivo However, the impact of MAF1b expression during chronic T. gondii infection is unclear. In this study, we assess the impact of MAF1b expression on cyst formation and cytokine production in mice. Despite generally low numbers of cysts generated by the in vitro culture-adapted strains used in this study, we find that parasites expressing MAF1b have higher numbers of cysts in the brains of chronically infected mice and that MAF1b+ cyst burden significantly increases during the course of chronic infection. Consistent with this, mice infected with MAF1b+ parasites have higher levels of the serum cytokines RANTES and VEGF (vascular endothelial growth factor) at day 57 postinfection, although this could be due to higher parasite burden at this time point rather than direct manipulation of these cytokines by MAF1b. Overall these data indicate that MAF1b expression may also be important in determining infection outcome during the chronic phase, either by directly altering the cytokine/signaling environment or by increasing proliferation during the acute and/or chronic phase.IMPORTANCE The parasite Toxoplasma gondii currently infects approximately one-third of the world's population and causes life-threatening toxoplasmosis in individuals with undeveloped or weakened immune systems. Current treatments are unable to cure T. gondii infection, leaving infected individuals with slow-growing tissue cysts for the remainder of their lives. Previous work has shown that expression of the parasite protein mitochondrial association factor 1 (MAF1b) is responsible for the association of T. gondii parasites with host mitochondria and provides a selective advantage during acute infection. Here we examine the impact of MAF1b expression during chronic T. gondii infection. We find that mice infected with MAF1b-expressing parasites have higher cyst burden and cytokine levels than their wild-type counterparts. A better understanding of the genes involved in establishing and maintaining chronic infection will aid in discovering effective therapeutics for chronically infected individuals.


Subject(s)
Host-Parasite Interactions , Mitochondrial Proteins/genetics , Protozoan Proteins/genetics , Toxoplasma/genetics , Toxoplasma/pathogenicity , Toxoplasmosis, Cerebral/parasitology , Animals , Brain/pathology , Chemokine CCL5/blood , Chronic Disease , Cysts/metabolism , Disease Models, Animal , Female , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred CBA , Toxoplasmosis, Cerebral/blood , Vascular Endothelial Growth Factor A/blood
7.
Mol Microbiol ; 108(5): 519-535, 2018 06.
Article in English | MEDLINE | ID: mdl-29505111

ABSTRACT

The Toxoplasma gondii locus mitochondrial association factor 1 (MAF1) encodes multiple paralogs, some of which mediate host mitochondrial association (HMA). Previous work showed that HMA was a trait that arose in T. gondii through neofunctionalization of an ancestral MAF1 ortholog. Structural analysis of HMA-competent and incompetent MAF1 paralogs (MAF1b and MAF1a, respectively) revealed that both paralogs harbor an ADP ribose binding macro-domain, with comparatively low (micromolar) affinity for ADP ribose. Replacing the 16 C-terminal residues of MAF1b with those of MAF1a abrogated HMA, and we also show that only three residues in the C-terminal helix are required for MAF1-mediated HMA. Importantly these same three residues are also required for the in vivo growth advantage conferred by MAF1b, providing a definitive link between in vivo proliferation and manipulation of host mitochondria. Co-immunoprecipitation assays reveal that the ability to interact with the mitochondrial MICOS complex is shared by HMA-competent and incompetent MAF1 paralogs and mutants. The weak ADPr coordination and ability to interact with the MICOS complex shared between divergent paralogs may represent modular ancestral functions for this tandemly expanded and diversified T. gondii locus.


Subject(s)
Mitochondria/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Toxoplasma/physiology , Toxoplasmosis/parasitology , Adenosine Diphosphate Ribose/chemistry , Adenosine Diphosphate Ribose/genetics , Adenosine Diphosphate Ribose/metabolism , Animals , Female , Fibroblasts/cytology , Fibroblasts/parasitology , Foreskin/cytology , Genetic Loci , Host-Parasite Interactions/physiology , Humans , Male , Mice , Mice, Inbred BALB C , Protozoan Proteins/genetics , Toxoplasma/genetics
8.
Genetics ; 203(1): 283-98, 2016 05.
Article in English | MEDLINE | ID: mdl-26920761

ABSTRACT

In Toxoplasma gondii, an intracellular parasite of humans and other animals, host mitochondrial association (HMA) is driven by a gene family that encodes multiple mitochondrial association factor 1 (MAF1) proteins. However, the importance of MAF1 gene duplication in the evolution of HMA is not understood, nor is the impact of HMA on parasite biology. Here we used within- and between-species comparative analysis to determine that the MAF1 locus is duplicated in T. gondii and its nearest extant relative Hammondia hammondi, but not another close relative, Neospora caninum Using cross-species complementation, we determined that the MAF1 locus harbors multiple distinct paralogs that differ in their ability to mediate HMA, and that only T. gondii and H. hammondi harbor HMA(+) paralogs. Additionally, we found that exogenous expression of an HMA(+) paralog in T. gondii strains that do not normally exhibit HMA provides a competitive advantage over their wild-type counterparts during a mouse infection. These data indicate that HMA likely evolved by neofunctionalization of a duplicate MAF1 copy in the common ancestor of T. gondii and H. hammondi, and that the neofunctionalized gene duplicate is selectively advantageous.


Subject(s)
Gene Duplication , Host-Parasite Interactions/genetics , Protozoan Proteins/genetics , Toxoplasma/genetics , Toxoplasmosis/parasitology , Animals , Cats , Gene Dosage , Gene Expression Regulation , Mice , Mice, Knockout , Multigene Family , Transcription, Genetic
9.
Eukaryot Cell ; 13(12): 1507-18, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25280815

ABSTRACT

Toxoplasma gondii and its nearest extant relative, Hammondia hammondi, are phenotypically distinct despite their remarkable similarity in gene content, synteny, and functionality. To begin to identify genetic differences that might drive distinct infection phenotypes of T. gondii and H. hammondi, in the present study we (i) determined whether two known host-interacting proteins, dense granule protein 15 (GRA15) and rhoptry protein 16 (ROP16), were functionally conserved in H. hammondi and (ii) performed the first comparative transcriptional analysis of H. hammondi and T. gondii sporulated oocysts. We found that GRA15 and ROP16 from H. hammondi (HhGRA15 and HhROP16) modulate the host NF-κB and STAT6 pathways, respectively, when expressed heterologously in T. gondii. We also found the transcriptomes of H. hammondi and T. gondii to be highly distinct. Consistent with the spontaneous conversion of H. hammondi tachyzoites into bradyzoites both in vitro and in vivo, H. hammondi high-abundance transcripts are enriched for genes that are of greater abundance in T. gondii bradyzoites. We also identified genes that are of high transcript abundance in H. hammondi but are poorly expressed in multiple T. gondii life stages, suggesting that these genes are uniquely expressed in H. hammondi. Taken together, these data confirm the functional conservation of known T. gondii virulence effectors in H. hammondi and point to transcriptional differences as a potential source of the phenotypic differences between these species.


Subject(s)
Toxoplasma/genetics , Base Sequence , Cell Nucleus/metabolism , Cells, Cultured , Gene Expression Regulation , Genes, Protozoan , Host-Parasite Interactions , Humans , Molecular Sequence Data , NF-kappa B/metabolism , Phylogeny , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , STAT6 Transcription Factor/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...